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ABSTRACT

This paper contains two parts. In the first part, a new set of diagnostic equations is derived for the third-order
moments for a buoyancy-driven flow, by exact inversion of the prognostic equations for the third-order moment
equations in the stationary case. The third-order moments exhibit a universal structure: they all are a linear
combination of the derivatives of all the second-order moments, w?, w8, 62, and ¢*. Each term of the sum contains
a turbulent diffusivity D,, which also exhibits a universal structure of the form D, = av, + bw8. Since the sign
of the convective flux changes depending on stable or unstable stratification, D, varies according to the type of
stratification. Here v, ~ wi (I is a mixing length and w is an rms velocity) represents the ‘‘mechanical’’ part,
while the ‘‘buoyancy’’ part is represented by the convective flux wé. The quantities @ and b are functions of the
variable (N7)?, where N* = ga8®/0z and T is the turbulence time scale. The new expressions for the third-order
moments generalize those of Zeman and Lumley, which were subsequently adopted by Sun and Ogura, Chen
and Cotton, and Finger and Schmidt in their treatments of the convective boundary layer.

In the second part, the new expressions for the third-order moments are used to solve the ensemble average
equations describing a purely convective boundary layer heated from below at a constant rate. The computed
second- and third-order moments are then compared with the corresponding LES results, most of which are
obtained by running a new LES code, and part of which are taken from published results. The ensemble average
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results compare favorably with the LES data.

1. Introduction

The first detailed observations in the atmospheric
convective boundary layer (CBL) were made at Wan-
gara (Clarke et al. 1971). In particular, the Wangara
day 33 yielded almost a day of data that, with the ex-
ception of the early morning, were devoid of effects
due to shear. At about the same time, Willis and Dear-
dorff (1974) performed laboratory measurements with
water to simulate a purely CBL with zero wind. The
CBL was deemed to consist of (i) a well-mixed bulk
region with vigorous turbulent activity and almost uni-
form mean potential temperature profile and (ii) a cap-
ping inversion whose strength depended mainly on the
initial conditions and the CBL history of the surface
heat flux. The negative heat flux produced by the en-
trainment of warmer air from above into the mixed bulk
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region of the CBL was maintained by the flux of tur-
bulence kinetic energy.

The first models of the CBL were the so-called slab
or one-layer models. With phenomenological assump-
tions rooted on observations, these models were suc-
cessfully employed for the prediction of the inversion
rise in air pollution meteorology (e.g., see Zeman and
Tennekes 1977). At the same time, the second-order
closure- (SOC) type models were incapable of repro-
ducing certain critical features of the CBL, such as the
magnitude of the inversion heat flux and therefore the
CBL growth. This deficiency was traced to the down-
gradient model used to evaluate the third-order mo-
ments that appear in the ensemble average equations
describing the second-order moments (Wyngaard and
Cote 1975; Zeman 1975). For example, while the ob-
served vertical flux of the turbulent kinetic energy (Fgg
= jq°w) is positive throughout the whole CBL, the
downgradient approximation yields a negative value in
the lower half of the layer. As a consequence, the di-
vergence of Fyg near the inversion layer, which pro-
vides the energy to maintain the entrainment process,
was underestimated, thus resulting in an unrealistically
low inversion heat flux. Zeman (1975), Zeman and
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Lumley (1976, hereafter referred to as ZL), and Andre
et al. (1976) showed that by including the buoyancy
terms in the equations for the third-order moments, one
could obtain the correct magnitude and sign of the
transport terms. ZL proposed algebraic expressions for
the third-order moments by invoking (i) stationarity,
(ii) zero fourth-order cumulants, and (iii) eddy and vis-
cous damping. To obtain a manageable set of equa-
tions, which would not require complex mathematical
manipulations such as tensor inversion, ZL had to fur-
ther drastically reduce the full expressions for the third-
order moments. Specifically, they neglected the con-
triution of mean temperature gradient (justified within the
mixed region), and the explicit dependence on buoy-
ancy of wu® (the vertical flux of the horizontal
components of the turbulent kinetic energy). The eddy
diffusivities were assumed to have a qualitatively cor-
rect form but were not derived from the equations
themselves [see Eq. (38) of ZL]. In spite of these ap-
proximations, the predicted third-order moments were
found to be in broad agreement with observations.
Since the CBL predictions of the ZL model were su-
perior to those of the early first-order or simple down-
gradient SOC models, the ZL third-order moments
were subsequently adopted without further modifica-
tions by Sun and Ogura (1980), Chen and Cotton
(1983), and Finger and Schmidt (1986).

The ZL model has several drawbacks, however. For
example, the predicted inversion interface was rather
diffuse, and quantities such as the temperature variance
near the inversion layer did not match the observations,
which indicate a pronounced narrow peak. Further-
more, the model yielded negative values of Fgy near
the ground, and the horizontal rms velocities were un-
derpredicted. In retrospect, it can be said that many of
the imperfections in the ZL model were attributable to
the crude model for the third-order moments as well as
to the equation for e, the rate of dissipation of kinetic
energy, which was unnecessarily complex, and to in-
compatible boundary conditions near the ground.

It must be noted that Andre et al. (1976) retained the
full third-order moment prognostic equations but, to
obtain realizable second-order moments in the absence
of eddy damping terms, they were forced to clip the
third-order moments.

2. Model problem and basic equations

In order to test the ensemble average model with the
new third-order moments, we study the time evolution
of an unsheared boundary layer heated from below at
a constant and uniform rate, switched on at the initial
time. The physical parameters and initial and boundary
conditions were chosen to simulate Deardorff’s exper-
iment in its revised version (Deardorff and Willis
1985). The dynamical equations governing the mean
temperature ®, the convective flux wé, the temperature
variance 6, and the vertical and horizontal kinetic en-
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ergies iw? and u? are well known (ZL; Sun and Ogura
1980; Bougeault 1981; Finger and Schmidt 1986):

%:-%W (1)
aﬁt;+aﬁzv=7+@—n§ @)
3??4.3»1;492 = 2wl — 2¢, 3
‘%+§zﬁ=zm-nw§e @

Here, © is the mean potential temperature, § = —00/
0z, A = ga, g is the acceleration due to gravity, and «
is the volume expansion coefficient. To solve these
equations, one needs three ingredients: the pressure
correlations I, the dissipation rates € and €4, and the
third-order moments, which we shall discuss in turn.

The pressure—temperature and the pressure—veloc-
ity correlations, defined as

I =0 0p/0z (6)
H33 = 2W_3p/az ) (7)

are modeled, in the absence of mean shear, with the
following expressions (Zeman and Lumley 1979; Shih
and Lumley 1985; Shih and Shabbir 1992):

I = 2cer, 'WB + c\G (10)

= 13\, 4\ — 0 ___
I = 2(:47',,1(w2 -3 qz) +3 cshwl + 2 6—pr. (11)

The return-to-isotropy time scale 7, is usually assumed
to be equal to 7 = 2e/e, where e is the turbulent kinetic
energy e = u” + 3w”. However, from Weinstock’s work
(1987) one can deduce that in the presence of stable
stratification, the appropriate time scale 7, is given by

7, =7(1 + C, N1, (12)

where C, = 0.04, if N> > 0, and C,, = 0, if N* < 0.
Here N is the Brunt—Viisili frequency N? = ga80/0z.
A similar result also follows from quite an independent
analysis of a stably stratified turbulence recently de-
veloped by two of the authors (Canuto and Minotti
1993). We have found that the use of Eq. (12) consid-
erably improves the behavior of all quantities near
the inversion layer, in particular 4, which otherwise
would decrease too fast near the inversion layer. The
results shown in this paper were all obtained using Eq.
(12). Finally, using Lumley’s suggestion (1978), the
term pw in (11) is modeled as —ag*w, where the con-
stant a is discussed in section 8.
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The rate of dissipation of turbulent kinetic energy €
is described by the following dynamic equation:

0e + 9 5 we = 2a;7"' Ml — azer™! + a;NT'w? (13)
ot 0z
with

= — S Agr(W? + AgrA\wh) de ) (14)
2 0z

Here, a; = 0.3 if N> > 0 and a; = O otherwise and 7
= 2ele. Equation (13) is different from the usual equa-
tion for € used in the well-known K—¢ model (Speziale
1991), from the dynamic equation employed by ZL,
and from the relation used by Sun and Ogura (1980),
Chen and Cotton (1983), and Finger and Schmidt
(1986). Specifically, in the latter works, the authors em-
ploy the local version of (13); namely,

e3/2
A b4
where the mixing length A is described with phenom-
enological expressions of the type suggested by Blak-
adar (Sun and Ogura 1980). Zeman and Lumley kept
the nonlocal character of (13) but employed a consid-
erably more complex equation. Finally, in the K-¢
model, even when applied to buoyant flows, the third-
order moment we does not contain the convective flux
wl, we being taken_to be proportional to the ‘‘mechan-
ical’’ diffusivity Tw?, rather than to the sum that ap-
pears in (14) and is more physically justified in the light
of the general structure for the third-order moments to
be discussed in the following.

Equation (13) contains a new term, the last one. Its
appearance is based on the phenomenological argu-
ment that the vertical excursion (say /,) of the eddies
is limited by the stable stratification so that the vertical
kinetic energy (w?) should be of the same order of the
potential energy N°[2. This leads to an enhancement of
€ « ¢°/l,, [see also the related argument in Zeman and
Tennekees (1977)]. The contribution is also important
to maintain quasi stationarity in homogeneous,
strati2fied turbulence, as was verified by one of the au-
thors (OZ) by comparing the model with DNS data of
stratified shear turbulence (Holt et al. 1992). Note also
that for negligible heat flux and neglecting the left-hand
side, Eq. (13) implies € « Nw?, which is equivalent to
NB/w* = O(1).

Finally, ¢, will be modeled as suggested by Andre et
al. (1982):

€ =

s)

€y = C2 02

(16)

3. Dynamic equations for the third-order moments

__The ynamlc equatlons for the third-order moments
6w?, wé?, w*, and g*w needed in Egs. (2)~(5) can be
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derived from the Navier—Stokes equations (Andre et
al. 1982; Canuto 1992). These equations contain
fourth-order moments and pressure and dissipation
terms that need to be modeled. The fourth-order
mome2nts are taken as products of second-order mo-
ments by assuming quasi normality (Hanjalic and
Launder 1972, 1976). The pressure terms are split into
diagonal and trace-free parts. The former are modeled
as a source, while the latter are treated in analogy with
the pressure terms (6) and (7). They are divided into a
slow part modeled via a return-to-isotropy expression
and a rapid part taken to be proportional to the aniso-
tropic production terms. Finally, the dissipation terms
are all written in terms of the dissipation of turbulent
kinetic energy e with the assumption of isotropic dis-
sipation scales. The results are [for a detailed derivation
see Zeman and Lumley (1979); Bougeault (1981); An-
dre et al. (1982); Bougeault and Andre (1986); Canuto
(1992)1:

O, N s _=29— _2
<6t+73)w0—ﬂw—w06zwz+2l 3 cu

X AW — 2u? a%m +77%q?0  (17)

(% +73 4+ 2r;‘> wh? = 26w0

15] — 0
—2w05£w0 w 5—02+(1 — 1) \@®

2 -1\3 ﬁ
(8t+T3 )w = —-3u? 8Zw

+3(1 — e )WP0 — 277w (19)
9 10 Nz (=20 =, =505
(6t+7'3 T )qw— 2W262w +wazq0

+ M1 = )W + g9  (20)

(18)

<g + r;‘)qTe = Bg’w + 2\w6?

- v —‘2- 1,20
(2 % wé + 96 )+3c*r q0 (21)

9 o oW 95
— + — — ——
( 5t s | = 30w - S - F, @)
where 3¢y = 2(cs + 3¢o — C1o), To = 0%/, and 2csTs
=T

4. The solution of Egs. (17)-(22)

If one considers a stationary case, Egs. (17)—(22)
become an algebraic system of equations for the third-
order moments, which can be inverted using a symbolic
algebra program. The result is
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N8 = Ard, Ll + A, L
0z 0z

0 = 0 =
2 02 = 2
+ O A Ao (23)
_ 5 5 —
w? = 7\TB1*62W9 + Bzgz-w2
+ (\7)*B, 27, B, Kl (24)
0z 0z
OT)*w8* = \7C, 9 wl + C, 9z
0z 0z
+ \T)%Cs 97, C. 9 ¢ (25
0z 0z
_ o o —
AT¢*8 = \TD, % wl + D, % w?
0 = 8 —
+ (\T)’D; b— 6 + D, — 32 (26)
—— 0 — 0 — J =
2. — —_ i) 2 =02
g‘w = \TE, 3zW9 +E282W + ()\T)E38 0
0 —
+ E, 5— 27
0 0 —
(AT’ = N\ F, — % wl + F, % w?
0 = 0 =
2F —_ 02 —_— a2
+ (A7) 3320 +F4azq, (28)

where the coefficients in front of the third-order mo-
ments have been chosen so that all the left-hand sides
of Eqgs. (23)—(28) have dimensions of velocity cubed.
Several remarks are in order. First, the downgradient
approximation is recovered by assuming that

A2.3.4 =0, 31,3,4 =0,

Ci24=0, Dy34=0, Ej,3=0. (29

Second, all the third-order moments exhibit the same
structure; namely, they all are a linear combination of
the derivatives of all the second-order moments. Third,
all the turbulent diffusivities A, B, C, D, E, and F ex-
hibit the same general structure, namely,

A; = A, W + ANTWE, (30)

and the same holds true for B, ..., F. The A; and A,
are dimensionless functions of the dimensionless com-
bination ga87* (see appendix). Equation (30) shows
that the turbulent diffusivities are contributed by a me-
chanical part v, ~ Ilw ~ Tw?, where l is a mixing length,
which represents the standard form for the turbulent
viscosity, plus a buoyant part due to the presence of
the convective flux wé. It was the inclusion of this latter
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component that allowed Sun and Ogura (1980) to ob-
tain better agreement with the large eddy simulation
(LES) data than with the downgradient approximation
(Moeng and Wyngaard 1989). It is important to note
that the inclusion of this buoyant contribution is accom-
plished by ZL using an ad hoc argument suggested by
a Lagrangian—statistical description of heat transfer in
inhomogeneous turbulence (Lumley et al. 1978) rather
than by the solution of the dynamical equations, as we
have done here. Irrespective of the derivation, neither
Sun and Ogura (1980) nor Finger and Schmidt (1986)
have included all the second-order moments appearing
in (23)-(28). Specifically, all the SOC models thus far
have taken

Ai=B,=C,=C,=0. 31)

5. Zeman-Lumley third-order moments

For purposes of completeness, we have also solved
Egs. (1)—(5) using the third-order moments of ZL,
namely, \

10(9

wo=-g, 2 _5=50—
0 8 11weazw
3 9=
v A\uTK, %2 0* (32)
9 —
9? = —K, — 6* 33
w B2 (33)
=20 _ g 0= 9
w +3p = K"'t?zw MLTKmazwo
- > (\wr)’K, —6* (34)
-2 2, 05
u +3p = SKmazu, (35
where
K, = m(-V + % )\/,rr;v_é) (36)
— _
G
Kt=7—clv_-|;m (37)
1+gfrc,wrN2
22 + ce)T. = T. (38)

The constant u was taken to be 0.17 rather than the
value of 0.31 originally suggested by ZL; this change
is probably related to the use of a different equation for
the dissipation e.

6. LES simulations

The LES was performed with the code described in
Nieuwstadt and Brost (1986). The values of the coef-
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ficients of the subgrid model and the numerics were
unchanged except that the resolved temperature was
calculated at the center of the grid volume instead of
at the staggered position where the vertical velocity is
calculated (w point). This is the same way that Schu-
mann and Mason (Nieuwstadt et al. 1993) calculate
their resolved temperature.

The boundary conditions were set as follows. The
horizontal conditions satisfy periodicity. At the lower
boundary a constant heat flux was prescribed with a
value of 6 K cm s™!. The vertical velocity w was set to
zero at this boundary. For the horizontal velocities, the
Monin—Obukhov (M—O) similarity theory was used.
At the upper boundary the stress-free boundary con-
dition was used for the horizontal velocities, and the
vertical gradient of temperature was fixed to a constant
equal to 0.3 K cm™. To avoid reflecting gravity waves,
a damping function was applied to the upper 12 grid
layers. The damping function had a relaxation time
scale of 48 seconds at the highest calculation level and
was increased by a factor of 4 at each computation level
for the next 11 levels down.

The calculation was performed in a rectangular do-
main, with horizontal dimensions of 6400 X 6400 m?
and a vertical dimension of 2400 m. The LES was per-
formed on a (64)° uniform grid. The initial height of
the boundary layer was 1680 m, with a time scale
Zwg!' of approximately 1100 s. From the initial field
the flow was allowed to develop for ten time scales
before the statistics were calculated. These statistics
were determined over a period of two time scales.

The results obtained are comparable to those of other
LES codes as can be seen in Figs. 2—23 [see Nieuw-
stadt et al. (1993) for a description of these codes]. All
second-order moment statistics correspond to total
magnitudes (resolved + subgrid). For the third-order
moments, only resolved quantities were used. The only
systematic difference with other LES is the large fluc-
tuation of temperature above the inversion layer. This
is probably due to the values of the coefficients chosen
for the damping function.

7. Numerical solutions and results

We have solved the system of equations (1)—(5) with
either expressions (23)-(28) or (32)-(38), respec-
tively.

The equations were numerically solved using stan-
dard finite differences, with centered spatial derivatives
and forward time derivatives; we chose a staggered grid
where the second-order moments and the dissipation e
are evaluated at the grid boundary, while the mean tem-
perature ® and third-order moments are determined at
the center of the grid. The solution of the finite-differ-
ence system then requires boundary conditions only for
the second-order moments and the dissipation ¢. We
have used the expressions suggested by ZL based on
the similarity theory:
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Wl = (W)*<1 - %) (39.2)
W= 1.25wi<1 _ %)2/3<%)2/3 (39.b)
W = 0.4w3 (39.c)

@ = 1.601(1 - %)4/3@)% (39.d)
€ = x(m)*<1 - %) , (39.¢)

where (W), is the heat flux at the surface layer, Z; is
the instantaneous value of the position of the minimum
of wé, and the convective velocity and temperature
scales, w and 0, respectively, are defined as

Wy = [)‘\(W*Zi]u3

(40)
(41)

It must be noted that relation (39.c) has been im-
posed to simulate the effect of the splattering of the big
eddies at the surface that produces a randomly sheared
boundary layer with high values of the horizontal ve-
locity variance u®. Although expression (39.c) cannot
be derived from a similarity analysis, it is nonetheless
confirmed by observations and LES results (see Andre
et al. 1976). The center of the first grid was chosen to
coincide with the surface. Relations (39) are imposed
at the upper boundary of this grid, while at the lower
boundary (which is then below the surface), the same
values are imposed so as to ensure zero derivative of
the second-order moments at the surface (consequently,
the third-order moments vanish at the surface). Equa-
tions (39) specify initial conditions to start the solu-
tions. These presuppose a strong inversion lid and local
similarity in the sense that in the M—O similarity the
surface heat flux wl, is replaced by the local value
w8 = wly(1 — z/h). This is not necessarily consistent
with the boundary conditions at the surface, but this is
irrelevant since the computed mixed layer becomes
independent of the initial conditions after about a
time =~ hfwy,.

At the upper boundary, sufficiently far from the in-
version layer (z =~ 2Z)), all turbulent quantities are taken
to be zero. The explicit time integration requires a par-
abolic stability condition, which in principle should be
determined by the maximum value of the diffusivities
(30) or (36)—(38). Since there is more than one diffu-
sivity, the process of finding the stability condition
turns out to be cumbersome and time consuming. We
have found, however, that a simpler global criterion can
be adopted that reads

At
WZ; ——s < 0.02.

B 42)
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FiG. 1. Profile of the temperature as given by the complete model
corresponding to (a) initial time, ¢+ = 0, (b) # = 300 s, and (c¢) ¢
=599 s.

The initial conditions correspond to zero turbulent
variables and a strongly stable temperature profile pro-
vided by the experimental set up of Deardorff and Wil-
lis (1985). Moreover,

A=0225cms?2K!

(Wh)y = 0.14 K cm s™". (43)

0.5

00« o v 1w 0w
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

wo

FiG. 2. Profile of the convective heat flux w@ normalized to the
heat flux at the bottom (W), Eq. (43). Solid line: complete SOC
model, dotted line: Schumann’s LES, dashed line: Moeng and Wyn-
gaard’s LES, and dash—dotted line: Nieuwstadt’s LES.
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F1G. 3. Turbulent vertical velocity variance w* normalized to w2
[see Eq. (40)]. Solid line: complete SOC model, dotted line: Schu-
mann’s LES, dashed line: Moeng and Wyngaard’s LES, and dash—
dotted line: Nieuwstadt’s LES.

In Fig. 1 the initial temperature profile is shown, to-
gether with those corresponding to ¢ = 599 sec and an
intermediate time. Our results are very close to those
shown in Fig. 1 of Finger and Schmidt (1986), which,
in turn, are good representations of the values observed
in the experiment by Deardorff and Willis (1985). The
resulting second- and third-order moments and the dis-
sipation rates e and ¢, are shown in Figs. 2—13 for the
complete model and in Figs. 13-23 for ZL’s model,
where we also plot the corresponding LES results.

As can be seen, both models yield results in agree-
ment with LES data; the main difference between them

0.0 ! R DRIl trerer e
0.00 0.10 0.20 0.30

0.40

FiG. 4. Profile of the horizontal velocity variance 12 normalized to
wh. Solid line: complete SOC model, dotted line: Schumann’s LES,
and dash—dotted line: Nieuwstadt’s LES.
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FiG. 5. Profile of the temperature fluctuation variance 6% normal-
ized to 6% [see Eq. (41)]. Solid line: complete SOC model, dotted
line: Schumann’s LES, and dash—dotted line: Nieuwstadt’s LES.

is that, above the inversion, the LES results show more
pronounced features and a slower decay of the mag-
nitudes involving correlations with temperature fluc-
tuations, which are better reproduced by the complete
model. The second-order moments are, in general, in
very good agreement with the only exception of the
horizontal velocity covariance u®. According to the
LES results, u* shows a secondary maximum near the
inversion layer that the SOC models are unable to re-
produce. The reason is that, when encountering the cap-
ping inversion (or the surface), the eddies splatter and

FIG. 6. Profile of the turbulent kinetic energy dissipation e nor-
malized to wiZ'. Solid line: complete SOC model, dotted line:
Schumann’s LES, dashed line: Moeng and Wyngaard’s LES, and
dash—dotted line: Nieuwstadt’s LES.

€q

F1G. 7. Profile of the destruction of temperature variance ¢, nor-
malized t0 wy84Z". Solid line: complete SOC model, and dash—
dotted line: Nieuwstadt’s LES.

produce a randomly sheared horizontal layer with an-
omalously high values of ?, even quite deeply inside
the inversion layer. This effect, which is not captured
by the SOC models since they assume zero shear every-
where, can only be accounted for at the surface by im-
posing the boundary condition (39.c). There is, how-
ever, no simple way to impose an analogous condition
at the inversion layer, except through modifying the
modeled pressure gradient term such as I1s;, Eq. (7). It
should be noted that expression (12) does partially ac-
count for the splattering effect at the inversion layer:

0.5~

0.0 e N
0.2

— 04
w3

Fic. 8. Profile of the vertical flux of the vertical component of
turbulent kinetic energy w® normalized to w}. Solid line: complete

SOC model, dotted line: Schumann’s LES, dashed line: Moeng and
Wyngaard’s LES, and dash—dotted line: Nieuwstadt’s LES.
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-0.2

0z ___ o4
q*w

_FiG. 9. Profile of the vertical flux of turbulent kinetic energy

1g°w normalized to w}. Solid line: complete SOC model, dashed

line: Moeng and Wyngaard’s LES, and dash—dotted line: Nieuw-
stadt’s LES.

as the Brunt—Viisdlid frequency N increases near the
inversion layer, 7, decreases with respect to the tur-
bulence (decay) time scale 7, and the rate of energy
transfer from the vertical to horizontal components is
thus enhanced. In fact, use of Eq. (12) considerably
improves the behavior of u?, which would otherwise
decay too fast as the inversion is approached. The splat-
tering effect might also be responsible for the relatively
high values of the dissipation e at and above the inver-
sion layer exhibited by the LES data, a result that can-
not be reproduced by the SOC models, even though the

w2e

__F1G. 10. Profile of the vertical flux of turbulent convective flux
w?0 normalized to wify. Solid line: complete SOC model, dotted
line: Schumann’s LES, dashed line: Moeng and Wyngaard’s LES,

and dash—dotted line: Nieuwstadt’s LES.
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FiG. 11. Profile of the vertical flux of the square of temperature
fluctuations wé? (proportional to the vertical flux of potential energy)
normalized to wy#3. Solid line: complete SOC model, dotted line:
Schumann’s LES, dashed line: Moeng and Wyngaard’s LES, and
dash—dotted line: Nieuwstadt’s LES.

predicted € is in better accord with the LES data
than u®. As far as the third-order moments are con-
cerned, the overall agreement between LES and SOC re-
sults is quite satisfactory, except for the overestimation
of wé* below 0.1z;, a problem that was also reported
by Andre (1982). In general, the third-order moments
behave correctly both near the ground and in the mixed
layer, but fall usually short of the LES values at the
inversion layer, although not dramatically. This prob-
lem can be traced to the fact that the turbulence time

R " P S
-0.0 0.2 0.4

0.6

q2e

FiG. 12. Profile of the triple correlation between temperature fluc-
tuations and turbulent kinetic energy 3¢°0 normalized to w38y. Solid
line: complete SOC model, and dash-dotted line: Nieuwstadt’s LES.
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__Fic. 13. Profile of the triple correlation of temperature fluctuations
6° normalized to 8. Solid line: complete SOC model, and dash—
dotted line: Nieuwstadt’s LES.

scale 7 is unrealistically small due to the rapid de-
crease of turbulent kinetic energy in the inversion layer
as compared with the LES results (also related to the
unrealistic profile of #* near the inversion layer). Since
the third-order moment time scale that controls the re-
turn-to-isotropy effect, 73, is taken proportional to 7,
an unrealistically small 7 overestimates the relaxation
and, consequently, produces very low third-order mo-
ments. This effect can be partially corrected in the com-
plete SOC model by decreasing the value of the con-
stant cg so as to increase the effective value of 75. In

0.0 PR B IS W S WP R |
~0.2 0.0 0.2

wo

FiG. 14. Profile of the convective heat flux w8 normalized with the
heat flux at the bottom (w8),, Eq. (43). Solid line: ZL SOC model,
dotted line: Schumann’s LES, dashed line: Moeng and Wyngaard’s
LES, and dash-dotted line: Nieuwstadt’s LES.
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0.5

0.0L .
-0.2

F1G. 15. Turbulent vertical velocity variance w* normalized to wk
[see Eq. (40)]. Solid line: ZL. SOC model, dotted line: Schumann’s
LES, dashed line: Moeng and Wyngaard’s LES, and dash-dotted
line: Nieuwstadt’s LES.

this way, a better agreement between the results of the
complete SOC model and the LES data at the inversion
layer is achieved and, as a bonus, a more realistic pro-
file of #%, with a more pronounced peak at the inversion
layer, is also obtained. This is the reason we have cho-
sen the value of ¢ to be 7.0 instead of the value of 8.0
quoted in the literature (Andre et al. 1982).

In general, while the performance of the complete
SOC model versus the ZL model when compared with
the LES data may be a matter of personal judgment,
we have found that there is an important difference.

FiG. 16. Profile of the horizontal velocity variance %’ normalized
to wi. Solid line: ZL SOC model, dotted line: Schumann’s LES, and
dash—dotted line: Nieuwstadt’s LES.
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40

92

F1G. 17. Profile of the temperature fluctuation variance & normal-
ized to 6%. Solid line: ZL SOC model, dotted line: Schumann’s LES,
and dash—dotted line: Nieuwstadt’s LES.

The ZL model is much more sensitive to the value of
the model constants of the third-order moment equa-
tions than the SOC model. For example (see next sec-
tion), increasing p by 20% produces changes in the
values of the third-order moments at the center of the
mixed layer ranging from 60% to 94%, while the most
sensitive constant of the complete model, ¢z, when in-
cremented by 20% produces changes in the third-order
moments at the same point between 9% and 17.6%.
The changes produced by a 20% increase of ¢ and ¢;;
are below 7% and 3%, respectively. This robustness

0.0 N P T D s s T e T STy
0.0 0.2 0.4 0.6 0.8 1.0

FiG. 18. Profile of the turbulent kinetic energy dissipation e nor-
malized to wZ'. Solid line: ZL. SOC model, dotted line: Schu-
mann’s LES, dashed line: Moeng and Wyngaard’s LES, and dash—
dotted line: Nieuwstadt’s LES.
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FiG. 19. Profile of the destruction of temperature variance €, nor-
malized to wg84Z7!. Solid line: ZL SOC model, and dash—dotted
line: Nieuwstadt’s LES.

makes the complete model better suited for predictive
calculations under more general conditions.
8. Model constants and sensitivity study

The values chosen for the constants of the model are
as follows:

Cy = 1, Cy = 1.75, Cs = 0.3, Ce = 3.25,
¢, = % a=0.1, a =095 a,=38,
1.5
!
Z
1.0 7
0.5 N
0.0_
-0.2 0.4

w3

FiG. 20. Profile of the vertical flux of the vertical component of
turbulent kinetic energy w* normalized to w3. Solid line: ZL SOC
model, dotted line: Schumann’s LES, dashed line: Moeng and Wyn-
gaard’s LES, and dash—dotted line: Nieuwstadt’s LES.

»
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0.0
~0.2

04
q%w
_F1G. 21. Profile of the vertical flux of turbulent kinetic energy
3q°w normalized to w}. Solid line: ZL SOC model, dashed line:
Moeng and Wyngaard’s LES, and dash—dotted line: Nieuwstadt’s
LES. .

1
cx=0, cs=7, cpo=4, Cu=§,

Ay = 0.075. 44

The constants in the second-order equations have stan-
dard values (Zeman and Lumley 1979) except for ¢,
whose value we take to be 1/ (Moeng and Wyngaard
1986), rather than the isotropic value 1/3.

We have studied the sensitivity of the model with
respect to changes of the model constants in the third-

0.5

0.0l

0.6
w2e

__F16. 22. Profile of the vertical flux of turbulent convective flux
w?0 normalized to w8, Solid line: ZL SOC model, dotted line:
Schumann’s LES, dashed line: Moeng and Wyngaard’s LES, and
dash~—dotted line: Nieuwstadt’s LES.
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FiG. 23. Profile of the vertical flux of the square of temperature
fluctuations wé? (proportional to the vertical flux of potential energy)
normalized to w,683%. Solid line: ZL SOC model, dotted line: Schu-
mann’s LES, dashed line: Moeng and Wyngaard’s LES, and dash—
dotted line: Nieuwstadt’s LES.

order moment equations by monitoring the ensuing
variations of the third-order moments at the midpoint
of the convective layer. In the case of the complete
SOC model we have varied the constants cg, ¢i9, and
c11, while only ¢ was changed in the case of ZL’s
model. In all cases the constants have been increased
by 20% of the reported values. The percentile changes
in the different third-order moments are summarized in
Table 1.

As stated in section 2, that we did not assume that
the time scale entering the pressure velocity and pres-
sure temperature correlations, Egs. (10)—(11), is equal
to the eddy turnover time 7 has helped improve the
SOC results. To make the point more quantitative, in
Figs. 24-25 we plot u* and the dissipation € resulting
from the assumption 7, = 7. Comparison with Figs. 4
and 6 shows that Eq. (12) does indeed have a significant
effect in the stably stratified region by bringing the re-
sults closer to the LES values.

9. Conclusions

In this paper we have presented a new set of equa-
tions for the third-order moments in terms of the sec-

TABLE 1.
w
+20% Cg C1o i (ZL)
W’ -17.6% +6.3% -2.6% +65%
qw -15.3% +6.5% -1.9% +62%
wi -16.9% +5.8% +0.16% +60%
wh? -9.0% +6.7% +0.27% +94%
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ond-order moments. The results obtained with these
equations compare well with LES simulations. We
have also found that expression (12) for the return-to-
isotropy time scale in the presence of stable stratifica-
tion greatly improves the results of both versions of the
SOC model, which suggests that further improvements
could be achieved by a better modeling of the pressure
terms, possibly using some nonlocal expressions that
have been shown to be very successful in the case of
shear flows (Durbin 1993). For most applications, how-
ever, we believe that the SOC model presented here
gives results comparable to those obtained with LES
codes and should thus be used to replace past SOC
models. In addition, it is argued that the poor represen-
tation of the splattering effect near the inversion layer
might be the cause of the failure of most SOC models
in reproducing the observed features in that layer.

We have also presented a comparison with the orig-
inal version of ZL’s third-order moment equations. It
is remarkable that this relatively simple model com-
pares so well with the LES data and this fact demands
an explanation. First, as mentioned earlier, a substantial
improvement has been achieved by incorporating ex-
pression (12). Further improvements are due to the new
dissipation equation, Eq. (13), which contains a Brunt—
Viisild frequency N term that accounts for the effect
of N on the turbulence length scale. Application of
boundary conditions to all second-order quantities in
agreement with observations and LES results near the
lower boundary also improved the performances of
both SOC models.

In conclusion, it may be said that the present model
contains more terms in the expansion for the individual

F1G. 24. Profile of the horizontal velocity variance * normalized
to w under the assumption that 7, = 7. Solid line: complete SOC
model, dotted line: Schumann’s LES, and dash—dotted line: Nieuw-
stadt’s LES. As one can notice, the agreement with the LES data is
considerably less satisfactory than that of Fig. 4 corresponding to the
use of Eq. (12).
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FiG. 25. Same as in Fig. 24 for the dissipation e.

third-order moments, which makes it more robust or
less sensitive to changes in the value of the model con-
stants. On the other hand, the ZL. model is apparently
a truncated version of the present model, and the dis-
carded higher-order terms (such as those containing
temperature gradients) are absorbed in the model con-
stants, making the ZL. model less robust than its com-
plete counterpart. Still, the present results suggest that
the ZL. model contains the essential physics of the third-
order transport and of the buoyancy-driven flows in
general.
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APPENDIX
The Turbulent Viscosities (Diffusivities)

Each of the diffusivities A, ..., F, has the form

exhibited in (30). Furthermore, each Ay, Ak, . . ., Fu,
F, has the form
DA = Ao + Ajnx + A + Ajsx® (A1)
AAp = Ao + Apix + A X + Apsx®. (A2)

etc.

The only exception is F,;, which has an additional x*.
Since (71)~(76) arise from the inversion of a matrix,
there is a denominator A whose structure is

A= AO + Alx + A2X2 + A3X3, (A3a)
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where the coefficients A; depend on the model constants
only, and the dimensionless function x is defined as
(A3b)

Using the coefficients ¢’s given in section 8, namely,

x = gaPri

Cg = 7’ Cio = 4’ 1 = ';- 3 C* = 0’ C = 1’ (A4)

we have obtained the following numerical values:
Ay =6.85 X 105 A, = -3.08 X 10°,
A, =230 X 10°, A; = -4.61
Ao = —9.7843 X 10° Ay, = 1.9994 x 10*
Ajp=-6144 A;3=0
Ajp = 361.81
Aip=0 Axn=0
Ao =0 Ay, = —9.6768 x 10*
Az = 1.9584 X 10°
Ay = —4.8922 X 10°

(A5)

A120 = —-9.4219 X 104

A2]3 = _5.76
Az = 9.7664 X 10°
A222 = —26.88 A223 =0

Az = —4.7111 X 10* Az, = 180.91
Az =0 A3 =0
A320 = —1.4133 X 104 A321 = 54.272

A =0 A =0
Aso=0 Ay = 4.0320 X 10°
Aup= —672 A4Hys =0
Apo=0 Ay =23040 Agpy=-384 Ap=0
Bjjp = —1.4838 X 10° By, = 3.0396 x 10°
By, = -9.216 B;; =0
By = 53.248
Biz=0 B =0
By, = 4.6054 x 10*
By, = —14720 B3 =0
B = 1.6179 X 10°
By = —4.608 By =0

B120 = _14193 X 104

BZIO

—1.3548 x 10°

B220 = _7.7414 X 104

B310 = —7.0963 X 103 B311 = 26.624
By, =0 B33 =0
B320 = —-2.1289 X 103 B321 = 7.9872

By =0 By =0
B411 = "‘17173 X 103
Biz=0 By;=0

B410 = 5.6448 X 104
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By = 3.2256 X 10° B, = —98.133
Bin=0 By =0
Cio=0 C;; = —1.0871 X 10°
Ci2=4096 C;;35=0
Cyy = 1.1110 x 10*
Ciz=-3072 Ci35=0
Coo=0 Gy =0 GCyp=-1.0752 X 10*

C213 = 384

Cuo = _7.6100 X 105

Cuo=0 Cyp =-54357 x 10*
Cyx=1792 Cyp3=0
Csy; = 5.5552 x 10°
Ciyp=—1536 GC535=0
Cyy = 1.6666 X 10°
Cipp = —4.608 Cip =0
Cio=0 Cy1 =0 Cy=448 C43=0
Cio=0 Cp =0 Cup =256 Cyp5=0
Dy = —9.7843 X 10° Dy, = 1.8844 X 10*
Dy, = =768 Dy;3=0

Ci10 = —3.8050 x 10°

C320 = —1.1415 X 105

Dy = —1.0871 X 10° Dy, = 607.57
D=0 D=0
Dyo=0 Dy, = —5.6448 X 10*
Dy, = 18133 Dy =0
Dyp =0 Dy = —1.0991 X 10°
Dy = 5376 Dy =0
Dsio = —5.4357 X 10* Dy, = 303.79
Dy; =0 Dy3=0
Dz = —1.6307 X 10* Dy = 91.136
Din=0 D;=0
Dyo=0 D, = —2.8224 x 10*
Dy» = 1.2683 X 10° Dy, = —5.76

Dy = —4.8922 X 10° D,y = 2.0413 X 10*
Dypy = =92.16 Dy =0
Ey = 27153 x 10°
Ey,=-9216 E;;3=0
E;; = 6144

E»p=0 Ex»n=0

EllO = "13548 X 105

E120 = —1.3715 X 104
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E210 = _7.9027 X 105 E211 = 24043 X 104
E212 = _768 E213 =0

Epo = —4.5158 X 10* Ey, = 394.24

Emy=0 E;=0
Esio = —6.88574 X 10° Es;, = 30.72

Esp=0 Ey3=0
Espo = —2.0572 X 10° Es, = 9.216

Eyp =0 Epp=0
E4 = 1.6860 X 10*
Ey, = —80.64 E; =0
E, = 93641
Epp = —4.608 Ep =0
Fi0=0 F;;,=0 Fy,=-40768 x 10*

E410 = _3.9514 X 105

E42() = -2.2579 X 104

Fi;5 = 153.6
Fio=0 Fyp = —2.8538 X 10°
Fip = 41664 X 10° Fip3 = —11.52
Fo0=0 F;;3=0 F;,=0
Fy3 = —4.0320 X 10° F,, = 14.41
Fpo=0 Fyp =0 Fy =-2.0384 x 10*
Fyy =672
F30=0 Fj3, = —1.4269 X 10°
Fi, = 2.0832 X 10° F33 = ~5.76

F320 = “2.5684 X 106 F321 = 7.2830 X 104

F322 = _239.36 F323 = 0
Fi0=0 Fuy =0 Fu,=0 Fu3=168
F420 =0 F421 =0 F422 =0 Fipn = 9.6.
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